GROUP B

케이블 접속재 Cable Accessory

경기도 안양시 동안구 관양2동 1475-10번지 평일빌딩 Tel: 031.420.6600 Fax: 031.424.7300

 $\label{eq:pyunglib} \mbox{PYUNGIL Bldg., } 1475\text{-}10, \mbox{Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, } 431\text{-}808, \mbox{Korea Tel: } 82\text{-}31\text{-}420\text{-}6650\text{-}3 \qquad \mbox{FAX: } 82\text{-}31\text{-}424\text{-}7300 \\ \mbox{FAX: } 82\text{-}31\text{-}424\text{-}3000 \\ \mbox{FAX: } 82\text{-}31\text{-}424\text{-}3$

www.pyungil.com

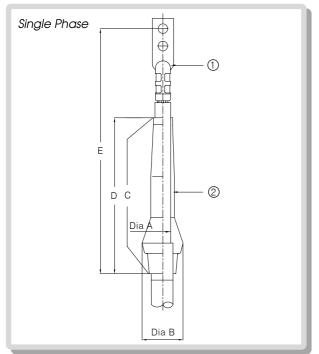
3.3kV 일체형 종단접속재 Single-piece Cable Termination for 3.3kV

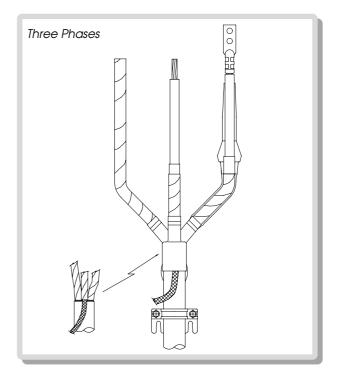
• 용도 APPLICATION - 지중용 케이블 끝단의 절연체의 보강으로 케이블 수명 연장 및 섬락 방지를 위한 종단 접속재

3SMT series of termination provides a class 1 indoor termination conforming to the requirements of IEEE Std. 48-1990 for 3.3kV system Typical uses for 3SMT are in pole-mounted transformer and for motor connection.

3SMT for application through 3.3kV is designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. 3SMT is designed for aluminum or copper conductors in the 8 to 500m²

• 시공 INSTALLATION - 케이블 준비가 완료되면 종단접속재 하우징을 케이블 절연체 위로 밀어넣은 후, 단자를 압착한다.


After cable preparation, the housing is slid down over the bared cable insulation until it seats on the cable shield. Terminal lug suitable for the conductor size is crimped.



www.pyungil.com

도면 Drawing

						UI III . II II I
Symbol	nbol Descripti		on		ation ter A(mm)	Creepage Distance(mm)
	Dia B	D	Е	Min	Max	С
EB	32		215	8.0	10.5	
EF	36		225	10.5	13.0	
FAB	40		236	15.5	18.5	
GH	44	115	247	18.5	22.5	150
НА	49.6		270	25.0	28.0	
HJ	54.5		281	30.0	33.0	
JB	59.1		295	33.5	37.0	

No.	Descripion	Material	Color
1	rubber housing	EPDM rubber	Gray
2	terminal lug	Tinned Cu	-

1. Rubber Housing: Molded of special EPDM compounds for functional reliability and long life. 2. Termial Lug: According to buyer's request, 2 hole lug is also available.

(우측의 표 이용)

To order the single-piece termination, complete the ordering formula, 3SMT-W-X-Y, The ordering formula is completed as follows

- 1. Determine the diameter of the cable over the insulation. Do not measure the diameter over the insulation shield.
- 2. For the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range. Insert this symbol for W in the ordering formula.
- 3. From the table X, select the symbol which represents the size and type of the cable conductor, insert this symbol for X in the ordering
- 4. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for a standard single-piece indoor termination for three phases for $120\,\mathrm{mm}$ copper cable with an insulation diam

To	ıble	W	To	ıble X	To	ıble Y
Sym			Sym bol	Conductor Size(mm²)	Sym bol	No of phases
DOI	Min	Max	25	25	1	1
EB	8.0	10.5	35	35	3	3
EF	10.5	13.0	50	50		
FAB	15.5	18.5	70	70		
GH	18.5	22.5	95	95		
НА	25.0	28.0	120	120		
HJ	30.0	33.0	150	150		
JB	33.5	37.0	185	185		
			240	240		
			300	300	x− □	- Conducto
			400	400	w-L	_ Insulation
			500	500	CABL	InsulationShielding
	Sym bol EB EF FAB GH HA HJ	Symbol Insul Min EB 8.0 EF 10.5 FAB 15.5 GH 18.5 HA 25.0 HJ 30.0	Min Max EB 8.0 10.5 EF 10.5 13.0 FAB 15.5 18.5 GH 18.5 22.5 HA 25.0 28.0 HJ 30.0 33.0	Sym bol Insulation Dia Sym bol Min Max 25 EB 8.0 10.5 35 EF 10.5 13.0 50 FAB 15.5 18.5 70 GH 18.5 22.5 95 HA 25.0 28.0 120 HJ 30.0 33.0 150 JB 33.5 37.0 185 240 300 400	Sym bol Insulation Dia Sym bol Conductor Size (mm) Min Max 25 25 EB 8.0 10.5 35 35 EF 10.5 13.0 50 50 FAB 15.5 18.5 70 70 GH 18.5 22.5 95 95 HA 25.0 28.0 120 120 HJ 30.0 33.0 150 150 JB 33.5 37.0 185 185 240 240 300 300 400 400 400	Sym bol Insulation Dia Sym bol Size (mm) bol Sym bol Conductor Size (mm) bol Sym bol Min Max 25 25 1 EB 8.0 10.5 35 35 3 EF 10.5 13.0 50 50 50 FAB 15.5 18.5 70

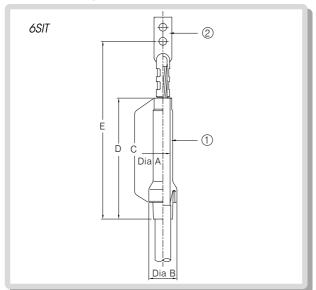
6.6kV 일체형 종단접속재 Single-piece Indoor Cable Termination for 6.6kV

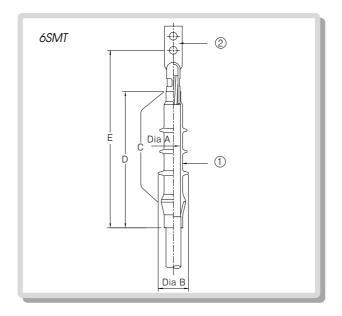
• 용도 APPLICATION - 케이블 단말 처리를 위한 전계분포 완화와 케이블 종단 밀폐 및 섬락 방지를 위한 옥내용 일체형 종단접속재

6SIT/6SMT series of termination provides a class 1 indoor/outdoor termination conforming to the requirements of IEEE Std. 48-1990 for 8.7kV system and IEC Std. 60502-4-1997 through 11kV system. Typical uses for 6SIT are in pole-mounted transformer and for motor connection, and typical uses for 6SMT would be on the riser poles either at the substation or on the distribution line.

6SIT/6SMT for application through 11kV are designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. 6SIT/6SMT are designed for aluminum or copper conductors in the 25 to 630mm2.

• 시공 INSTALLATION - 케이블 준비가 완료되면 종단접속재 하우징을 케이블 절연체 위로 밀어넣은 후, 단자를 압착한다.


After cable preparation, the housing is slid down over the bared cable insulation until it seats on the cable shield. Terminal lug suitable for the conductor size is crimped.



www.pyungil.com

도면 Drawing

Unit: mm

С Dia B D Е Min Max ΕB 31.7 253 11.0 14.0 EF 32.8 255 12.5 15.5 200 197.8 FΑ 34.6 255 14.0 17.0 FAB 36.6 262 15.5 18.5 GA 40.3 280 18.5 21.5 GH 43.0 286 21.5 24.5 HA 46.6 295 24.5 27.5 210 203.7 HJ 52.0 312 26.5 29.0 54.7 312 29.5 32.0 JA JAB 57.4 320 32.0 35.0 60.0 320 35.0 38.0

지수 / Dimension(6SMT)

Symbol	Des				ation er A(mm)	Creepage Distance(mm)
	Dia B	D	Е	Min	Max	С
EB	33.4		247	11.0	14.0	
EF	34.5		252	12.5	15.5	
FA	36.3		252	14.0	17.0	
FAB	38.3	214	258	15.5	18.5	210
GA	41.0		268	18.5	21.5	
GH	43.7		274	21.5	24.5	
HA	47.3		279	24.5	27.5	
HJ	62.2		302	26.5	29.0	050
JA	64.9	225	307	29.5	32.0	250
JAB	71.6	220	320	32.0	35.0	260
JB	74.3		330	35.0	38.0	200

No.	Descripion	Material	Color
1	rubber housing	EPDM rubber	Gray
2	terminal lug	Tinned Cu	-

주문방법 / Ordering Information

(우측의 표 이용)

To order 6SIT or 6SMT, complete the ordering formula, 6SIT/SMT-W-X-Y.

- 1. Determine the application, SIT for indoor and SMT for outdoor.
- 2. Determine the diameter of the cable over the insulation.
- 3. From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 4. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 5. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for an indoor termination for 6.6kV three phases for 120mm² copper cable with an insulation diameter of 19.0_{mm} is 6SIT-FAB-120-3.

Table W			To	ıble X	Table Y		
Sym bol	Insulation Dia				Conductor Size(m²)	Sym bol	No of phases
DOI	Min	Max	25	25	1	1	
EB	11.0	14.0	35	35	3	3	
EF	12.5	15.5	50	50			
FA	14.0	17.0	70	70			
FAB	15.5	18.5	95	95			
GA	18.5	21.5	120	120			
GH	21.5	24.5	150	150			
HA	24.5	27.5	185	185			
HJ	26.5	29.0	240	240	X-г	ı — Conduct	
JA	29.5	32.0	300	300	w-L	— Insulatio	
JAB	32.0	35.0	400	400	w —	- Insulatio	
JB	35.0	38.0	500	500	CAB	Shieldin	

25kV 옥내용 일체형 종단접속재 Single-piece Indoor Cable Termination for 25kV

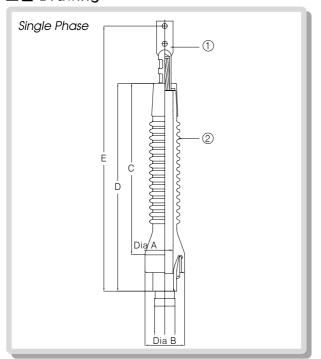
• 용도 APPLICATION - 케이블 단말 처리를 위한 전계 분포 완화, 케이블 종단 밀폐 및 섬락 방지를 위한 옥내용 일체형 종단접속재

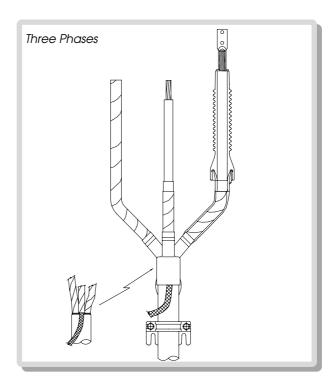
25SIT series of termination provides a class 1 indoor termination conforming to the requirements of IEEE Std. 48-1990 for 25kV system and IEC Std. 60502-4-1997 through 12/20(24)kV system. Typical uses for 25SIT are in pole-mounted transformer and for motor connection,

25SIT for application through 25kV are designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. **25SIT** is designed for aluminum or copper conductors in the 35 to 630mm2.

• 시공 INSTALLATION - 케이블 준비가 완료되면 종단접속재 하우징을 케이블 절연체 위로 밀어넣은 후, 단자를 압착한다.

After proper cable preparation, installation is accomplished by first sliding the stress cone base onto the cable until it seats on the cable shield. Next, the 4 modules are slid on the cable. Terminal lug suitable for the conductor size is crimped on and a waterproof cap is added.




www.pyungil.com

SINGLE-PIECE INDOOR CABLE TERMINATION FOR 25KV

도면 Drawing

치수 / Dimension

- []	n	it	m	m

			Unit : mm							
Symbol	Description		Insulation Diameter A(mm)		Creepage Distance(mm)					
	В	D	Е	Min	Max	С				
G	60.2			22.5	25.0					
J	00.2	385.5	547	24.5	27.5					
N	65.6			27.5	30.0					
JA	00.0	385	569	29.5	32.5					
JAB	69.9	000	007	32.5	34.5					
JB	09.9	381.5	565.5	34.5	37.5	345.5				
KA	73.0			37.0	39.5	040.0				
KB	73.0			39.5	42.5					
PA	80.4	384.5	568.5	42.5	45.0					
PB	80.4	304.3	500.5	45.0	49.5					
Q	00.0			49.5	53.5					
R	88.9							53.5	55.0	

주문방법 / Ordering Information (우측의표 이용)

To order 25SIT, complete the ordering formula, 25SIT-W-X-Y.

- 1. Determine the diameter of the cable over the insulation.
- 2. From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 3. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 4. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for an indoor termination for 25kV three phases for 120_{mm} copper cable with an insulation diameter of 25.0_{mm} is 25SIT-J-120-3.

No.	Descripion	Material	Color
1	rubber housing	EPDM rubber	Gray
2	terminal lug	Tinned Cu	-

Tc	ıble	W	To	ıble X	To	ıble Y	
Sym bol	Insulation Dia				Conductor Size(mi)	Sym bol	No of phases
DOI	Min	Max	95	95	1	1	
G	22.5	25.0	120	120	3	3	
J	24.5	27.5	150	150			
Ν	27.5	30.0	185	185			
JA	29.5	32.5	240	240			
JAB	32.5	34.5	300	300			
JB	34.5	37.5	400	400			
KA	37.0	39.5	500	500	X− □	Conduct	
KB	39.5	42.5	630	630	w-H	1 — Insulatio	
PA	42.5	45.0	800	800	*	— Insulatio	
PB	45.0	49.5	1000	1000	CABI	E Shielding	
Q	49.5	53.5					
R	53.5	55.0					

25kV 옥외용 일체형 종단접속재 Single-piece Outdoor Cable Termination for 25kV

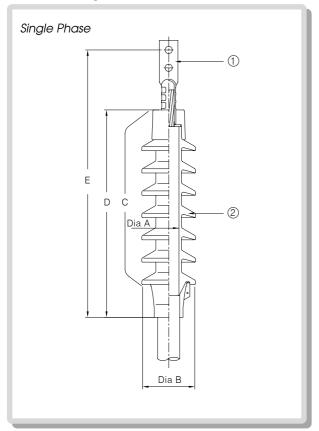
• 용도 APPLICATION - 케이블 단말 처리를 위한 전계 분포 완화와 케이블 종단 밀폐 및 섬락 방지를 위한 옥외용 일체형 종단접속재

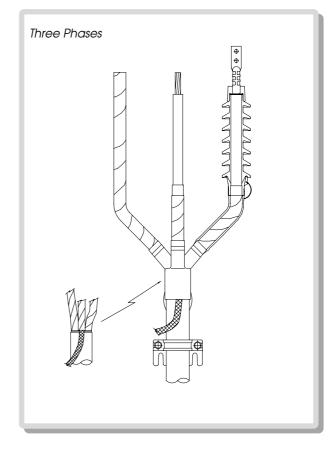
25SMT series of termination provides a class 1 outdoor termination conforming to the requirements of IEEE Std. 48-1990 for 25kV system and IEC Std. 60502-4-1997 through 12/20(24)kV system. Typical uses for 25SIT are in pole-mounted transformer and for motor connection,

25SMT for application through 25kV are designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. **25SMT** is designed for aluminum or copper conductors in the 95 to 300mm².

• 시공 INSTALLATION - 케이블 준비가 완료되면 종단접속재 하우징을 케이블 절연체 위로 밀어넣은 후, 단자를 압착한다.

After cable preparation, the housing is slid down over the bared cable insulation until it seats on the cable shield. Terminal lug suitable for the conductor size is crimped.




www.pyungil.com

SINGLE-PIECE OUTDOOR CABLE TERMINATION FOR 25KV

도면 Drawing

Unit: mm

			01111111111			
Symbol	Descr	ription		Description Insulat		
	А	Dia B	N	<i>M</i> in	Max	
G		40	2	2.5	25.1	
J	477	60	00	2	4.5	29.5
N	477	66	2	7.2	30.5	
JA		00	2	9.1	32.8	

No.	Descripion	Material	Color
1	rubber housing	EPDM rubber	Gray
2	terminal lug	Tinned Cu	-

주문방법 / Ordering Information

(우측의 표 이용)

To order 25SMT, complete the ordering formula, 25SMT-W-X-Y.

- 1. Determine the diameter of the cable over the insulation.
- 2. From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 3. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 4. Determine whether for 1 phase or 3 phases for Y.

The ordering number for an outdoor termination for 25kV three phases for 120mm copper cable with an insulation diameter of 25.0_{mm} is 25SMT-J-120-3.

To	able	W	To	ıble X	Table Y			
Sym bol	Insulation Dia		Dia bo		Sym bol	Conductor Size(mm²)	Sym bol	No of phases
DOI	Min	Max	35	35	1	1		
G	22.5	25.1	50	50	3	3		
J	24.5	29.5	70	70				
N	27.2	30.5	95	95				
JA	29.1	32.8	120	120				
			150	150				
			185	185	x-[— Conducto		
		240	240	w-	— Insulation — Insulation			
			300	300	CAB	Shiolding		

15kV 옥외용 모듈형 종단접속재 Modular Type Cable Termination for 15kV

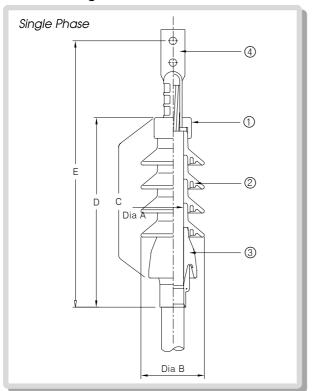
• 용도 APPLICATION - 케이블 단말 처리를 위한 전계분포 완화와 케이블 종단 밀폐 및 섬락 방지를 위한 옥외용 모듈형 종단접속재

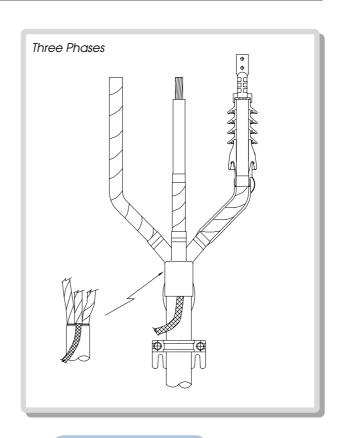
15MT series of termination provides a class 1 outdoor termination conforming to the requirements of IEEE Std. 48-1990 for 15kV system and IEC Std. 60502-4-1997 through 15kV system. Typical uses for 15MT termination are in switchgear and pad-mounted transformers.

15MT series termination for application through 15kV is designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. 15MT terminations are designed for aluminum or copper conductors in the 95 to 1,000mm2.

• 시공 INSTALLATION - 케이블 준비가 완료되면, 종단접속재, 스트레스 콘, 모듈 등을 케이블 절연체위로 밀어 넣은 후, 단자를 압착한다.

After proper cable preparation, installation is accomplished by first sliding the stress cone base onto the cable until it seats on the cable shield. Next, the 4 modules are slid on the cable. Terminal lug suitable for the conductor size is crimped on and a waterproof cap is added.


www.pyungil.com



15kV 옥외용 모듈형 종단접속재

MODULAR TYPE CABLE TERMINATION FOR 15KV

도면 Drawing

지수 / Dimension

In	it	r	m	m

1 1 1			Unit : mm			
Symbol	Description			Insulation Diameter A(mm)		Creepage Distance(mm)
	Dia B	D	Е	Min	Max	С
G		292	431	21.0	23.5	530
J	95.5	325	463	23.0	25.0	614
N		292	431	25.5	28.0	530
JA		303	442	28.5	31.0	555
JAB		330	490	30.0	32.5	615
JB	108	300	465	31.5	34.0	555
KA	100	330	490	34.5	37.0	615
KB		303	464	37.5	40.0	555
PA		000	404	40.5	43.0	555
PW	100	325	486	42.5	45.0	745
Q	120	303	464	48.5	51.5	582

(우측의 표 이용)

To order 15MT, complete the ordering formula, 15MT-W-X-Y

- 1. Determine the diameter of the cable over the insulation.
- 2. From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 3. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 4. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for an outdoor termination for 15kV three phases for 120mm copper cable with an insulation diameter of 22.0_{mm} is 15MT-G-120-3.

No.	Descripion Materia		Color
1	rain cap	EPDM rubber	Gray
2	module(skirt)	EPDM rubber	Gray
3	stress cone	EPDM rubber	-
4	terminal lug	Tinned Cu	-

То	ıble	W	To	ıble X	Table Y		
Sym bol	Insulation Dia		Sym bol	Conductor Size(m²)	Sym bol	No of phases	
DOI	Min	Max	95	95	1	1	
G	21.0	23.5	120	120	3	3	
J	23.0	25.0	150	150			
Ν	25.5	28.0	185	185			
JA	28.5	31.0	240	240			
JAB	30.0	32.5	300	300			
JB	31.5	34.0	400	400			
KA	34.5	37.0	500	500	X− □	 Conducto 	
KB	37.5	40.0	630	630	w-H	1 — Insulation	
PA	40.5	43.0	800	800	"	Insulation	
PW	42.5	45.0	1000	1000	CABL	E Shielding	
Q	48.5	51.5					

25kV 옥외용 모듈형 종단접속재 Modular Type Cable Termination for 25kV

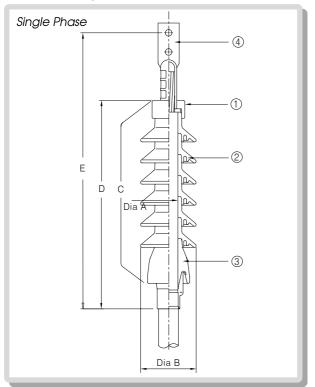
• 용도 APPLICATION - 케이블 단말 처리를 위한 전계분포 완화와 케이블 종단 밀폐 및 섬락 방지를 위한 옥외용 모듈형 종단접속재

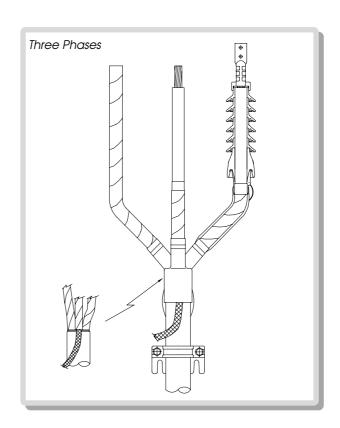
35MT series of termination provides a class 1 outdoor termination conforming to the requirements of IEEE Std. 48-1990 for 25kV system and IEC Std. 60502-4-1997 through 25kV system. Typical uses for 35MT termination are in switchgear and pad-mounted transformers.

35MT series termination for application through 25kV is designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. 35MT terminations are designed for aluminum or copper conductors in the 95 to 1,000mm².

• 시공 INSTALLATION - 케이블 준비가 완료되면, 종단접속재, 스트레스 콘, 모듈 등을 케이블 절연체위로 밀어 넣은 후, 단자를 압착한다.

After proper cable preparation, installation is accomplished by first sliding the stress cone base onto the cable until it seats on the cable shield. Next, the 6 modules are slid on the cable. Terminal lug suitable for the conductor size is crimped on and a waterproof cap is added.




www.pyungil.com

MODULAR TYPE CABLE TERMINATION FOR 25KV

도면 Drawing

치수 / Dimension

Ш	'n	it	m	m

						Orin . Itiliti			
Symbol		Des	Description			ulation eter A(mm)	Creepage Distance(mm)		
		Dia B	D	Е	Min	Max	С		
	G		374	513	21.0	23.5	750		
	J	95.5	411	549	23.0	25.0	841		
	Ν		374	513	25.5	28.0	750		
	JA		385	524	28.5	31.0	776		
	JAB		418	582	30.0	32.5	840		
	JB	108	381	546	31.5	34.0	776		
	KA	100	418	578	34.5	37.0	840		
	KB		385	546	37.5	40.0	776		
	PA		000	040	40.5	43.0	776		
	PW	100	411	572	42.5	45.0	980		
	Q	120	385	546	48.5	51.5	816		

주문방법 / Ordering Information

(우측의 표 이용)

To order 35MT, complete the ordering formula, 35MT-W-X-Y.

- 1. Determine the diameter of the cable over the insulation.
- From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 3. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 4. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for an outdoor termination for 25kV three phases for 120mm² copper cable with an insulation diameter of 25.0_{mm} is 35MT-J-120-3.

No.	Descripion	Material	Color
1	rain cap	EPDM rubber	Gray
2	module(skirt)	EPDM rubber	Gray
3	stress cone	EPDM rubber	~
4	terminal lug	Tinned Cu	-

To	able	W	Тс	ıble X	Table Y		
Sym bol			Sym bol	Conductor Size(mil)	Sym bol	No of phases	
DOI	Min	Max	95	95	1	1	
G	21.0	23.5	120	120	3	3	
J	23.0	25.0	150	150			
Ν	25.5	28.0	185	185			
JA	28.5	31.0	240	240			
JAB	30.0	32.5	300	300			
JB	31.5	34.0	400	400			
KA	34.5	37.0	500	500	X− □	□ - Conduct	
KB	37.5	40.0	630	630	w-H	1 — Insulation	
PA	40.5	43.0	800	800	**	Insulation	
PW	42.5	45.0	1000	1000	CABL	E Shielding	
Q	48.5	51.5					

35kV 옥외용 모듈형 종단접속재 Modular Type Cable Termination for 35kV

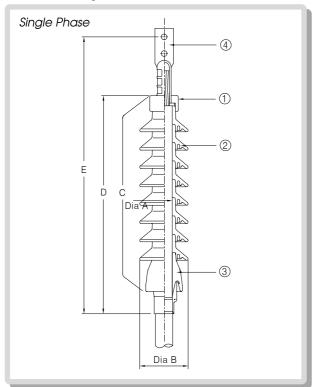
• 용도 APPLICATION - 케이블 단말 처리를 위한 전계분포 완화와 케이블 종단 밀폐 및 섬락 방지를 위한 옥외용 모듈형 종단접속재

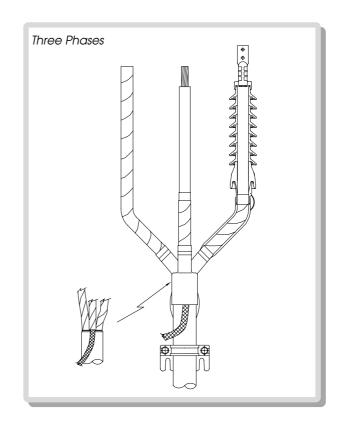
K35MT series of termination provides a class 1 outdoor termination conforming to the requirements of IEEE Std. 48-1990 for 35kV system and IEC Std. 60502-4-1997 through 35kV system. Typical uses for K35MT termination are in switchgear and pad-mounted transformers.

K35MT series termination for application through 35kV is designed for use on extruded dielectric cables and can be applied directly on cables with extruded semi-conductive shields whether full-neutral concentric or drain-wire types. K35MT terminations are designed for aluminum or copper conductors in the 95 to 1,000mm².

• 시공 INSTALLATION - 케이블 준비가 완료되면, 종단접속재, 스트레스 콘, 모듈 등을 케이블 절연체위로 밀어 넣은 후, 단자를 압착한다.

After proper cable preparation, installation is accomplished by first sliding the stress cone base onto the cable until it seats on the cable shield. Next, the 8 modules are slid on the cable. Terminal lug suitable for the conductor size is crimped on and a waterproof cap is added.




www.pyungil.com

MODULAR TYPE CABLE TERMINATION FOR 35KV

도면 Drawing

치수 / Dimension

- 1	In	it	m	m

		D	Unit : mm				
Symbol		Description		Insulation Diameter A(mm)		Creepage Distance(mm)	
		Dia B	D	Е	Min	Max	С
	G		456	595	21.0	23.5	972
	J	95.5	497	635	23.0	25.0	1068
	Ν		456	595	25.5	28.0	972
	JA		467	606	28.5	31.0	997
	JAB		506	666	30.0	32.5	1065
	JB	108	463	628	31.5	34.0	997
	KA	100	506	666	34.5	37.0	1065
	KB		467	628	37.5	40.0	997
	PA		407	020	40.5	43.0	997
	PW	100	411	572	42.5	45.0	1215
	Q	120	467	628	48.5	51.5	1050

주문방법 / Ordering Information

(우측의 표 이용)

To order K35MT, complete the ordering formula, K35MT-W-X-Y.

- 1. Determine the diameter of the cable over the insulation.
- From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 3. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 4. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for an outdoor termination for 35kV three phases for 120mm copper cable with an insulation diameter of 30.0_{mm} is K35MT-JA-120-3.

No.	Descripion	Material	Color				
1	rain cap	EPDM rubber	Gray				
2	module(skirt)	EPDM rubber	Gray				
3	stress cone	EPDM rubber	-				
4	terminal lug	Tinned Cu	-				

To	ıble	W	Table X		Table Y		
Sym bol	Insulation Dia		Sym bol	Conductor Size(mm)	Sym bol	No of phases	
DOI	Min	Max	95	95	1	1	
G	21.0	23.5	120	120	3	3	
J	23.0	25.0	150	150			
Ν	25.5	28.0	185	185			
JA	28.5	31.0	240	240			
JAB	30.0	32.5	300	300			
JB	31.5	34.0	400	400			
KA	34.5	37.0	500	500	X− □	 Conductor 	
KB	37.5	40.0	630	630	w— — Insulatio		
PA	40.5	43.0	800	800	— Insulatio		
PW	42.5	45.0	1000	1000	CABI	<u>E</u> Shielding	
Q	48.5	51.5					

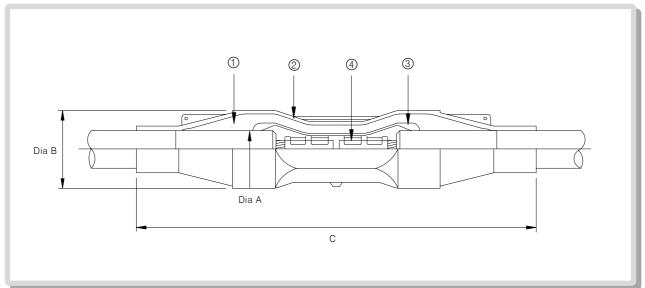
직선 접속재 Cable Straight Joint for 15kV to 35kV

• 용도 APPLICATION - 케이블과 동일한 구조를 가지면서 클로버 형태의 독특한 내부구조로 열발산 효과를 가지는 두개의 케이블을 연결하기 위한 직선접속재

PYUNGIL power cable joints (PCJ) conforms to the requirements of IEEE Std. 404-1993 through 15kV to 35kV to assure system matched performance and ratings equal to the cable to be installed. PCJ is a permanent, fully-shielded, fully submersible cable joint for direct burial or vault application. It can be used to join cable runs on new installation or to repair broken cable runs on existing installation.

PCJ series of straight joint is designed to efficiently and smoothly distribute the electrical stress over the connector and the cable screen ends. Its special cloverleaf shape permits controlled deflection to reduce assembly force requirements, maintains positive heat transfer interface and also provides minimum thermal resistance to ambient.

• 시공 INSTALLATION - 케이블 준비가 완료되면 직선 접속재 하우징을 한쪽 케이블 절연체 위로 밀어넣은 후,슬리브를 압착하고 다시 하우징을 중앙으로 위치시킨다.


The cables should be prepared according to the supplied installation instruction. Installation is accomplished by first sliding the PCJ housing onto one cable over an cable. Conductors are inserted into the splice connector and then the connector is crimped with the proper crimping tool. The housing is then slid into position.

www.pyungil.com

도면 Drawing

Unit: mm

			O		
Symbol	Descr	iption	Insulation Diameter A(===)		
	Dia B	С	Min	Max	
E	46.3	257	13.5	17.0	
F	44.7	260.4	16.8	20.3	
G			19.3	24.1	
Н	61.2	365	21.6	26.7	
J			24.9	30.3	
K			27.7	33.3	
L			30.3	37.2	
М	70.7		34.8	41.4	
N	70.7		38.5	45.2	
Р			41.8	49.1	
Q			48.3	53.9	

(우측의 표 이용)

To order PCJ for 15kV to 35kV, complete the ordering formula, OOPCJ-W-X-Y.

- 1. Determine the voltage. Insert 15 for 15kV, 25 for 25kV and 35 for 35kV for OO. 2. Determine the diameter of the cable over the insulation.
- 3. From the Table W, select the symbol for the insulation range wherein the diameter of the cable insulations nearest to the midpoint of the range and Insert it for W.
- 4. From the Table X, select the symbol which represents the size, and insert this symbol for X.
- 5. Determine whether for 1 phase or 3 phases for Y.

EXAMPLE

The ordering number for a PCJ for 25kV three phases for 120mm copper cable with an insulation diameter of 25.0_{mm} is 25PCJ-H-120-3.

No.	Descripion	Material	Color
1	insulation	EPDM rubber	Gray
2	conductive shield	EPDM rubber	Black
3	conductive insert	EPDM rubber	Black
4	connector(sleeve)	Tinned Cu	-

Ta	ble	W	Table X		Table Y	
Sym bol	Insulation Dia		Sym bol	Conductor Size(mi)	Sym bol	No of phases
551	Min	Max	95	95	1	1
Е	13.5	17.0	120	120	3	3
F	16.8	20.3	150	150		
G	19.3	24.1	185	185		
Н	21.6	26.7	240	240		
J	24.9	30.3	300	300		
K	27.7	33.3	400	400		
L	30.3	37.2	500	500		
М	34.8	41.4	630	630	X− □	Conducto
			800	800	w-L	_ Insulation
			1000	1000	CABI	InsulationShielding